Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants.

Abstract:

Anti-AIDS drug candidate and non-nucleoside reverse transcriptase ...
Anti-AIDS drug candidate and non-nucleoside reverse transcriptase inhibitor (NNRTI) TMC125-R165335 (etravirine) caused an initial drop in viral load similar to that observed with a five-drug combination in naive patients and retains potency in patients infected with NNRTI-resistant HIV-1 variants. TMC125-R165335 and related anti-AIDS drug candidates can bind the enzyme RT in multiple conformations and thereby escape the effects of drug-resistance mutations. Structural studies showed that this inhibitor and other diarylpyrimidine (DAPY) analogues can adapt to changes in the NNRTI-binding pocket in several ways: (1). DAPY analogues can bind in at least two conformationally distinct modes; (2). within a given binding mode, torsional flexibility ("wiggling") of DAPY analogues permits access to numerous conformational variants; and (3). the compact design of the DAPY analogues permits significant repositioning and reorientation (translation and rotation) within the pocket ("jiggling"). Such adaptations appear to be critical for potency against wild-type and a wide range of drug-resistant mutant HIV-1 RTs. Exploitation of favorable components of inhibitor conformational flexibility (such as torsional flexibility about strategically located chemical bonds) can be a powerful drug design concept, especially for designing drugs that will be effective against rapidly mutating targets.

Polymerases:

Topics:

Health/Disease, Structure and Structure/Function, Reverse Transcriptase

Status:

new topics/pols set partial results complete validated

Results:

Polymerase Reference Property Result Context
HIV RT K103N Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. Reverse Transcriptase Activity Yes
HIV RT K103N Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. Associated condition HIV

Entry validated by:

Structures:

1SV5 1SUQ 1S9G 1S9E 1S6Q 1S6P

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.