Coupling DNA unwinding activity with primer synthesis in the bacteriophage T4 primosome.

Abstract:

The unwinding and priming activities of the bacteriophage T4 ...
The unwinding and priming activities of the bacteriophage T4 primosome, which consists of a hexameric helicase (gp41) translocating 5' to 3' and an oligomeric primase (gp61) synthesizing primers 5' to 3', have been investigated on DNA hairpins manipulated by a magnetic trap. We find that the T4 primosome continuously unwinds the DNA duplex while allowing for primer synthesis through a primosome disassembly mechanism or a new DNA looping mechanism. A fused gp61-gp41 primosome unwinds and primes DNA exclusively via the DNA looping mechanism. Other proteins within the replisome control the partitioning of these two mechanisms by disfavoring primosome disassembly, thereby increasing primase processivity. In contrast to T4, priming in bacteriophage T7 and Escherichia coli involves discrete pausing of the primosome and dissociation of the primase from the helicase, respectively. Thus nature appears to use several strategies to couple the disparate helicase and primase activities within primosomes.

Polymerases:

T4

Topics:

Accessory Proteins/Complexes

One line summary:

A T4 primosome continuously unwinds while allowing for primer synthesis through its disassembly or a new DNA looping mechanism. Gp61-gp41 primosome uses the latter method alone, and its processivity is enhanced by proteins inhibiting primosome dissociation.

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.