Characterization of the DNA polymerase gene of varicella-zoster viruses resistant to acyclovir.

Abstract:

The nucleotide changes of the DNA polymerase gene and the ...
The nucleotide changes of the DNA polymerase gene and the susceptibility of acyclovir (ACV)-resistant varicella-zoster virus (VZV) mutants to anti-herpetic drugs were determined and compared to those of herpes simplex virus type 1 (HSV-1) mutants. The seven ACV-resistant VZV mutants were classified into three groups, N(779)S, G(805)C and V(855)M, according to the sequences of their DNA polymerase genes. The amino acid substitutions N(779)S and G(805)C were identical in position to the N(815)S and G(814)C mutations in the HSV-1 DNA polymerase mutants, respectively, and the V(855)M amino acid substitution was similar to the HSV-1 V(892)M mutation. All three groups of VZV mutants were susceptible to ACV, phosphonoacetic acid, vidarabine and aphidicolin, at levels similar to those seen with the respective HSV-1 mutants, except for subtle differences that were due possibly to the non-conserved regions in their sequences. Although both the HSV-1 and the VZV DNA polymerase genes show 53% sequence similarity, both viruses essentially show a similar biochemical behaviour.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.