Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha.
Biochemistry (1999), Volume 38, Page 8961
Abstract:
Previously we showed that the yeast proteins Spt16 (Cdc68) and Pob3 are physically associated, and interact physically and genetically with the catalytic subunit of DNA polymerase alpha, Pol1 [Wittmeyer and Formosa (1997) Mol. Cell. Biol. 17, 4178-4190]. Here we show that purified Spt16 and Pob3 form a stable, abundant, elongated heterodimer and provide evidence that this is the functional form of these proteins. Genetic interactions between mutations in SPT16 and POB3 support the importance of the Spt16-Pob3 interaction in vivo. Spt16, Pob3, and Pol1 proteins were all found to localize to the nucleus in S. cerevisiae. A portion of the total cellular Spt16-Pob3 was found to be chromatin-associated, consistent with the proposed roles in modulating chromatin function. Some of the Spt16-Pob3 complex was found to copurify with the yeast DNA polymerase alpha/primase complex, further supporting a connection between Spt16-Pob3 and DNA replication.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.