Processivity clamp gp45 and ssDNA-binding-protein gp32 modulate the fidelity of bacteriophage RB69 DNA polymerase in a sequence-specific manner, sometimes enhancing and sometimes compromising accuracy.
Genetics (2005), Volume 169, Page 1815
Abstract:
Numerous studies of the impact of accessory proteins upon the fidelity of DNA synthesis have provided a complex and sometimes discordant picture. We previously described such an analysis conducted in vitro using various bacteriophage RB69 gp43 mutator DNA polymerases with or without the accessory proteins gp32 (which binds single-stranded DNA) plus gp45/44/62 (processivity clamp and its loaders). Mutations were scored at many sites in the lacZalpha mutation reporter sequence. Unexpectedly, the accessory proteins sometimes decreased and sometimes increased fidelity at a handful of specific sites. Here, we enlarge our analysis with one particular mutator polymerase compromised in both insertion accuracy and proofreading and also extend the analysis to reactions supplemented only with gp32 or only with gp45/44/62. An overall 1.56-fold increase in mutation frequencies was produced by adding single or multiple accessory proteins and was driven mainly by increased T(template)*G(primer) mispairs. Evidence was found for many additional sites where the accessory proteins influence fidelity, indicating the generality of the effect. Thus, accessory proteins contribute to the site-specific variability in mutation rates characteristically seen in mutational spectra.
Polymerases:
Topics:
Mutational Analysis, Fidelity, Accessory Proteins/Complexes
One line summary:
A mutant RB69 polymerase was subjected to fidelity testing with and without the presence of accessory proteins (either gp32 or gp45/44/62), with results indicating that accessory proteins increased the rate of mutation.
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.