Uracil incorporation: a source of pulse-labeled DNA fragments in the replication of the Escherichia coli chromosome.
Proceedings of the National Academy of Sciences of the United States of America (1978), Volume 75, Page 233
Abstract:
Uracil is incorporated into newly synthesized DNA by mutants of Escherichia coli with reduced levels of dUTPase (dUTP nucleotidohydrolase; EC 3.6.1.23). Excision-repair of the incorporated uracil results in the generation of labeled DNA fragments that appear after brief pulses with [(3)H]thymidine [Tye, B-K., Nyman, P.-D., Lehman, I. R., Hochhauser, S. & Weiss, B. (1977) Proc. Natl. Acad. Sci. USA 74, 154-157]. Uracil is also incorporated into the newly synthesized DNA of strains of E. coli that contain normal levels of dUTPase. DNA fragments generated by the postreplication excision-repair of uracil may therefore contribute to the pool of nascent DNA (Okazaki) fragments that normally appear in wild-type strains. Discontinuous DNA replication has been examined in the absence of uracil excision by comparing Okazaki fragments in strains that are defective in DNA polymerase I (polA(-)) and polA(-) strains that are also defective in uracil N-glycosidase, an enzyme required for the excision-repair of uracil in DNA (polA(-)ung(-)). Little or no difference was detected in the level of Okazaki fragments in the polA(-) strain as compared with the polA(-)ung(-) strain. Thus, the uracil-induced cleavage of DNA cannot be the sole mechanism for the generation of Okazaki fragments. Mutants that are defective both in dUTPase and in uracil N-glycosidase incorporate uracil into their DNA with a high frequency (up to 1 per 100 nucleotides). These uracil residues, once incorporated, persist in the DNA without an adverse affect on the growth of the cells.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.