Design, synthesis, SAR, and molecular modeling studies of acylthiocarbamates: a novel series of potent non-nucleoside HIV-1 reverse transcriptase inhibitors structurally related to phenethylthiazolylthiourea derivatives.
Ranise A, Spallarossa A, Schenone S, Bruno O, Bondavalli F, Vargiu L, Marceddu T, Mura M, La Colla P, Pani A
Journal of medicinal chemistry (2003), Volume 46, Page 768
Abstract:
A novel series of potent, selective HIV-1 N-acylthiocarbamate (ATC) nonnucleoside reverse transcriptase inhibitors (NNRTIs) is described. The title compounds were synthesized through a highly convergent, one-pot procedure. In cell-based assays, the lead compound (17c) prevented the HIV-1 multiplication with an EC(50) of 8 microM. The lead optimization strategy was developed by single or multiple modifications of the three molecular portions, in which 17c was notionally divided. Molecular modeling studies led to the synthesis of O-(2-phthalimidoethyl)-N-(p-substituted phenyl)-N-acylthiocarbamates, which showed in vitro activities against HIV-1 in the low nanomolar range. Nevertheless, the title compounds retained low potency against HIV-1 strains carrying mutations (K103R, Y181C, and K103N/Y181C) responsible for NNRTI resistance. The hypothetical docking model of RT/17c and RT/25c, derived from X-ray crystallographic structure of a PETT derivative in complex with HIV-1 RT, revealed that the model structures of ATCs do not approximate the NNRTI butterfly-like conformation. Analysis of these hypotetical complexes helps to rationalize some SARs and resistance data.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.