Increased Learning and Brain Long-Term Potentiation in Aged Mice Lacking DNA Polymerase μ.
Lucas D, Delgado-García JM, Escudero B, Albo C, Aza A, Acín-Pérez R, Torres Y, Moreno P, Enríquez JA, Samper E, Blanco L, Fairén A, Bernad A, Gruart A
PloS one (2013), Volume 8, Page e53243
Abstract:
A definitive consequence of the aging process is the progressive deterioration of higher cognitive functions. Defects in DNA repair mechanisms mostly result in accelerated aging and reduced brain function. DNA polymerase µ is a novel accessory partner for the non-homologous end-joining DNA repair pathway for double-strand breaks, and its deficiency causes reduced DNA repair. Using associative learning and long-term potentiation experiments, we demonstrate that Polµ(-/-) mice, however, maintain the ability to learn at ages when wild-type mice do not. Expression and biochemical analyses suggest that brain aging is delayed in Polµ(-/-) mice, being associated with a reduced error-prone DNA oxidative repair activity and a more efficient mitochondrial function. This is the first example in which the genetic ablation of a DNA-repair function results in a substantially better maintenance of learning abilities, together with fewer signs of brain aging, in old mice.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.