Elementary steps in the DNA polymerase I reaction pathway.
Abstract:
The polymerization reaction catalyzed by Escherichia coli DNA polymerase I (Pol I) has been studied by using the homopolymer template-primer system poly(dA).oligo(dT). Isotope-partitioning experiments indicate that the reaction follows an ordered mechanism in which Pol I first combines with template-primer to form an E.poly complex followed by addition of MgTTP and catalysis. The parameters governing the binding of Pol I to the template-primer are kon = 1.2 X 10(6) M-1 s-1, koff = 0.25 s-1, and KD = 2 X 10(-7) M. Efforts to demonstrate the catalytic competence of the binary E.MgTTP complex were unsuccessful. Following initiation of the catalytic cycle, Pol I catalyzes the incorporation of an average of 40-50 TTP molecules into polymer before dissociating from the template-primer. The processive nature of the polymerization reaction as reflected by the isotope-trapping time dependence can be accounted for by a model in which processive synthesis is treated as a simple partitioning between continued polymerization (kcat = 3.8 s-1, 22 degrees C) and dissociation of the enzyme from the template-primer under steady-state conditions (koffss = 0.1 s-1). The rapid quench time course of the polymerization reaction (kcat = 2.5 s-1, 20 degrees C) exhibited a pre-steady-state burst consistent with two partially rate-determining steps, one of which precedes the actual chemical phosphodiester bond-forming step (k = 4.6 s-1) and the other which follows this step (k = 4.0 s-1). Binding of MgTTP to the E.poly complex was shown to be a rapid equilibrium step by steady-state isotope-partitioning experiments. This suggested that the first rate-determining step may be a first-order isomerization which follows the binding of substrates and precedes bond formation.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.