Pyridoxal 5'-phosphate inhibition of adenovirus DNA polymerase.
Abstract:
Pyridoxal phosphate modification of adenovirus DNA polymerase results in loss of DNA polymerase activity, whereas the 3' --> 5' exonuclease activity is unaffected. Inhibition by pyridoxal phosphate is time-dependent, displays saturation kinetics, and is reversible in the presence of excess primary amine unless the pyridoxal phosphate-enzyme adduct is first reduced with NaBH4. Thus, inhibition is the consequence of Schiff base formation between the aldehyde moiety of pyridoxal phosphate and primary amino groups on the enzyme. In addition to inhibiting DNA polymerase activity, pyridoxal phosphate also inhibited the ability of the enzyme to initiate viral DNA replication, by transfer of dCMP onto the preterminal protein. Neither template-primer nor dNTP protect against pyridoxal phosphate inhibition, but the combination of template-primer and complementary substrate dNTP protected both initiation and DNA polymerase activities. Thus, it is likely that both the dCMP transfer activity required for initiation and DNA polymerase activity are carried out at the same site of the enzyme.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.