Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli.
Proceedings of the National Academy of Sciences of the United States of America (2001), Volume 98, Page 8350
Abstract:
DNA polymerase V, composed of a heterotrimer of the DNA damage-inducible UmuC and UmuD(2)(') proteins, working in conjunction with RecA, single-stranded DNA (ssDNA)-binding protein (SSB), beta sliding clamp, and gamma clamp loading complex, are responsible for most SOS lesion-targeted mutations in Escherichia coli, by catalyzing translesion synthesis (TLS). DNA polymerase II, the product of the damage-inducible polB (dinA ) gene plays a pivotal role in replication-restart, a process that bypasses DNA damage in an error-free manner. Replication-restart takes place almost immediately after the DNA is damaged (approximately 2 min post-UV irradiation), whereas TLS occurs after pol V is induced approximately 50 min later. We discuss recent data for pol V-catalyzed TLS and pol II-catalyzed replication-restart. Specific roles during TLS for pol V and each of its accessory factors have been recently determined. Although the precise molecular mechanism of pol II-dependent replication-restart remains to be elucidated, it has recently been shown to operate in conjunction with RecFOR and PriA proteins.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.